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ABSTRACT

The divisor graph of an associative ring R (denaedG(R)) was introduced by Satyanarayana, Srauua[9].
In this paper, we introduce a simple concept “Povildnain in a Divisor Graph” .We prove thatlf= a £ R is nilpotent,
then the power chain starting with a is of finiemgth. If DG(R) (the divisor graph of R) contampower chain starting

with @ € B which is of infinite length, theh= o = 1, a is non-idempotent and non-nilpotent elemene anhounce
some basic results. Finally, we deduce that ieRab integral domain and & &, then0 = a # 1 if and only if the power

chain starting with a (in DG(R)) is of infinite Igth.
KEYWORDS:Associative Ring, Divisor Graph of a Ring, Complétaph
Mathematics Subject ClassificatiorD5C07, 05C20, 05C76, 05C99, 13E15
1. INTRODUCTION

Beck [2] related a commutative ring R to a graghusing the elements of R as vertices and twadoesrs. v are
adjacent if and only ifty = 0. Anderson and Livingston [1] proposed a modifiedtimod of associating a commutative

ring to a graph by introducing the concept of aozsivisor graph of a commutative ring. Satyanaray®&havanari,
Syam Prasad K and Nagaraju D [26] introduced “Priaraph” of a ring and later studied by several argh These
concepts are different bridges connecting the tveoties: Ring Theory & Graph Theory.

Now we introduce a concept called “Power Chaina givisor graph” of a ring. This idea motivatestagprove

the following results: (i) DG&,,) contains a chain of lengts{n) — 1. (ii) If p-prime , then DGE;) contain a max chain

of length p -2.
Now we review some definitions and results forgbke of completeness.
1.1 Definitions

Let G = (VIG), £(G)) be a graph wher(G) is the set of vertices of G a{G) the set of edges of G. An edge

between two vertices, y £ V(& Jis denoted byxy .
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* Agraph G (V, E) is said to be a star graph if ¢hexists a fixed vertex v such that E = {vu /aV and u#£ v}. A

star graph is said to be an n-star graph if thebmurof vertices of the graph is n.

» (Satyanarayana, Srinivasulu D &Mallikarjuna [14]gt G be a graph. The star number of G is defireethax {n
/ there exists an n-star graph which is a subgodyghand n is an integer with = 1}. We denote this star number
of G bys, (G).

* (Satyanarayana Bhavanari and Syam Prasad K [2E8P)mplete graph is a simple graph in which each phir

distinct vertices are joined by an edge. The cotefeaph on ‘n’ vertices is denoted Ky.

» (Satyanarayana Bhavanari, Srinivasulu DevanaboitmlBeasar & Mallikarjuna Bhavanari [9]) Let R be an
associative ring and.y € B. We say that x divides y (if there exigt& R such that xz =y or zx = ¥ ).A graph
G = (V, E) is said to be thedivisor graph of R (denoted by DG(R)) if V = R and
E={yfxz=yorzx =y forsomez € R and x = y}.

Power Chains in a Divisor Graph
2.1. Definition

A chain

o

X1 X
Xz X3 4

Figure 1

is said to be a power chain starting with & a andx, = a{x,-yJancx,_4 # x, foralln = 1.

2.2 Note If a= R is an idempotent thew = a* and so there is no edge in DG(R)) between azand

2.3 ExamplesiIf R = Z, = {0, 1} the ring of integers modulo 2, then V () = {0, 1}. E (DG(R)) ={01}. Now DG(R)

is given in Figure 2.

1

I DG(R)=DG(Z;)

0

Figure 2

If R = Z3 = {0, 1, 2} the ring of integers modulo 3, V (DGYR= {0, 1, 2} and E(DG(R)) = 01, 02,12 }.

Now there is only one power chain in DG(R) and igjiven in Figure 3.

5 22 — 1 Figure 3
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. »
> 22 =0
. .
3 3?2 =1

Figure 4

If R = Z, = {0, 1, 2, 3} the ring of integers modulo 4, V@R)) = {0, 1, 2, 3} and E(DG(R))=11,
2,23, 13 }. Now there exist two power chains in DG(R) amd aiven in Figure 4.

2l

385

al
&

If R =2;, then R =E; = {0, 1, 2, 3, 4} the ring of integers modulo 5(DG(R)) = {0, 1, 2, 3, 4} and

(b
2
[
|
=y
L
[#X]
Il
]
(%]
=9
Il

If R =E;,then R =

E(DG(R))= {01, 02, 03, 04,05, 12,13.14.15, 23, 7%, 34}.

2 4

—

> 52 =1
Figure 6

If # =Z;,then R=EZ;={0,1,2

E(DG(R))= {01, 02, 03, 04,05,08, 12.13.12.15, 16, 23 34,35,36.45

%]
I\."l
=
&l
-3

DG(R) is given in Figure 7.

,34,35,36,45,36.56).
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4 42 =7 48 =1
[ 1 A [ ] a ' S
5 - -
0z — 4 03— g & _ 5 _
5* =2 52 =3 56 _
— a
6 62 =1
Figure 7

2.4. Results
« DG(Z,) contains a chain of lengtsi{n) — 1
 (i))If p-prime , then DGE,) contain a max chain of length p -2
2.5 Lemma If 0 = a £ R is nilpotent then the power chain starting witts &fi finite length.

Proof: Suppose that £ R is a nilpotent element. Then there exists a pesihteger k such that® = 0. Letm

be the least positive integer such tiedlt = 0. Now writex,= a, xp=alxg ).
MNow . . - -
x1 X2 o xrr =0
Figure 8

is the power chain starting with @R and its length is m, a finite length.

2.6 Lemma:If DG (R) contains a power chain starting wits & which is of infinite length, thell = a = 1, a is hon—
idempotent and non — nilpotent element.

Proof: Suppose that DG(R) contains a power chain stawitiga which is of infinite length. Suppose thearh

Xl Kz Xz Xp Xpay
Figure 9

withx,= a andx,, = alx,_,)=a", x,_, £ x,foralln.

Sincex, # x; we have thak = g* and so a is not idempotent.
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If a = 0 thenx,= 0 =x,, a contradiction.

Suppose a is the nilpotent element. Then by abewenla, the power chain starting with a is of filéagth, a
contradiction.

Therefore a con not be a nilpotent element.

2.7 Lemma:Let R be an integral domain.¥f# & £ R then a cannot be a nilpotent element.
Proof: Suppose a is nilpotent, Then there exists aipesittegersuch thata™ = 0 without loss
of generality we assume that n is the least pesititeger such tha™ = 0. Now a.(g" ) =0and e = 0,a"* 20, a

contradiction. The proof is complete.

2.8. Theorem

Let R be an integral domain ancea®. ThenQ = a # 1if and only if the power chain starting with a (iG6[R))

is of infinite length.
Proof: Suppose a is non-zero element in R.
Theng® = 0 for any positive integer. (by lemma — 2.7)

Now we prove thag® # a**! for all k>1. Suppos&®= g**%. Theng®*(1 —g)=0=(1-a)=0

(since af = 0)
= & = 1,a contradiction.
This shows tha&® = &%+ for any positive integer k.
So the edgem is in the divisor graph DG(R). This is true fof pbsitive integers k.

Therefore the chain given here.

o GR+1

Figure 10

(that is the power chain starting with a ) is lfmite chain.

Now the converse follows from Lemma 2.6.
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